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INTRODUCTION

These notes follow a course given at the University of Paris VII during the
spring semester of academic year 1987-88. Their purpose is to expound
basic results in the representation theory of finite groups of Lie type (a
precise definition of this concept will be given in chapter 3).

Let us start with some notations. We denote by F, a finite field of charac-
teristic p with ¢ elements (g is a power of p). The typical groups we will look
at are the linear, unitary, symplectic, orthogonal, ... groups over F,. We
will consider these groups as the subgroups of points with coefficients in F,
of the corresponding groups over the algebraic closure F, (which are alge-
braic reductive groups). More precisely, the group over F, is the set of fixed
points of the group over F, under an endomorphism F' called the Frobe-
nius endomorphism; this will be explained in chapter 3. In the following
paragraphs of this introduction we will try to describe, by some examples,
a sample of the methods used to study the complex representations of these
groups. More examples are developed in detail in chapter 15.

Induction from subgroups

Let us start with the example where G = GL,(F,) is the general linear
group over FF,. Let T be the subgroup of diagonal matrices; it is a subgroup
of the group B of upper triangular matrices, and there is a semi-direct
product decomposition B = U X T, where U is the subgroup of the upper
triangular matrices which have all their diagonal coefficients equal to 1. The
representation theory of T is easy since it is a commutative group (actually
isomorphic to a product of n copies of the multiplicative group F}). Com-
position with the natural homomorphism from B to T (quotient by U) lifts
representations of T to representations of B. Inducing these representations
from B to the whole of the linear groups gives representations of G (whose
irreducible components are called “principal series representations”). More
generally we can replace T with a group L of block-diagonal matrices, B
with the group of corresponding upper block-triangular matrices P, and
we have a semi-direct product decomposition (called a Levi decomposition)
P = VXL, where V is the subgroup of P whose diagonal blocks are identity
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matrices; we may as before induce from P to G representations of L lifted
to P. The point of this method is that L is isomorphic to a direct product of
linear groups of smaller degrees than n. We thus have an inductive process
to get representations of G if we know how to decompose induced repre-
sentations from P to . This approach has been developed in the works of
Harish-Chandra, Howlett and Lehrer, and is introduced in chapters 4 to 7.

Cohomological methods

Let us now consider the example of G = U, the unitary group over F,.
It can be defined as the subgroup of matrices A € GL,(F,2) such that
tAll = A-!) where AlY denotes the matrix whose coefficients are those of A
raised to the g-th power. It is thus the subgroup of GL,(F,) consisting of
the fixed points of the endomorphism F : 4 +» (*Ald)~1,

A subgroup L of block-diagonal matrices in U, is again a product of unitary
groups of smaller degree. But this time we cannot construct a bigger group
P having L as a quotient. More precisely, the group V of upper block-
triangular matrices with coefficients in FF, and whose diagonal blocks are
the identity matrix has no fixed points other than the identity under F.

To get a suitable theory, Harish-Chandra’s construction must be general-
ized; instead of inducing from V >4 L to G, we construct a variety attached
to V on which both L and G act with commuting actions, and the coho-
mology of that variety with £-adic coeflicients gives a (virtual) bi-module
which defines a “generalized induction” from L to G. This approach, due
to Deligne and Lusztig, will be developed in chapters 10 to 13.

Gelfand-Graev representations

Using the above methods, a lot of information can be obtained about the
characters of the groups G(IF,), when G has a connected centre. The situ-
ation is not so clear when the centre of G is not connected. In this case one
can use the Gelfand-Graev representations, which are obtained by inducing
a linear character “in general position” of a maximal unipotent subgroup (in
GL, the subgroup of upper triangular matrices with ones on the diagonal
is such a subgroup). These representations are closely tied to the theory of
regular unipotent elements. They are multiplicity-free and contain rather
large cross-sections of the set of irreducible characters, so give useful addi-
tional information in the non-connected centre case (in the connected centre
case, they are combinations of Deligne-Lusztig characters).
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For instance, in SL,(F,) they are obtained by inducing a non-trivial linear
character of the group of matrices of the form ((1) 11‘) such a character

corresponds to a non-trivial additive character of IF,; there are two classes
of such characters under SL,(F,), which corresponds to the fact that the
centre of SL, has two connected components (its two elements).

The theory of regular elements and Gelfand-Graev representations is ex-
pounded in chapter 14, with, as an application, the computation of all
irreducible characters on regular unipotent elements.

Assumed background

We will assume that the reader has some basic familiarity with algebraic
geometry, but we will give as far as possible statements of all the results
we use; a possible source for these is R. Hartshorne’s book “Algebraic Ge-
ometry” ([Ha]). Chapters 0, 1 and 2 contain the main results we use from
the theory of algebraic groups (the proofs will be often omitted in chapter
0; references for them may be found in the books on algebraic groups by
A. Borel [B1], J. E. Humphreys [Hu] and T. A Springer [Sp] which are all
good introductions to the subject). We will also recall results about Coxeter
groups and root systems for which the most convenient reference is the vol-
ume of N. Bourbaki [Bbk] containing chapters IV, V and VI of the theory
of Lie groups and Lie algebras. However, we will not give any references for
the basic results of the theory of representations of finite groups over fields
of characteristic 0, which we assume known. All we need is covered in the
first two parts of the book of J. -P. Serre [Se].

Bibliography

Appropriate references will be given for each statement. There are two
works about the subject of this book that we will not refer to systematical-
ly, but which the reader should consult to get additional material: the book
of B. Srinivasan [Sr] for the methods of Deligne and Lusztig, and the survey
of R. W. Carter [Ca] which covers many topics that we could not introduce
in the span of a one-semester course (such as unipotent classes, Hecke al-
gebras, the work of Kazhdan and Lusztig, ...); furthermore our viewpoint
or the organization of our proofs are often quite different from Carter’s (for
instance the systematic use we make of Mackey’s formula (chapters 5 and
11) and of Curtis-Kawanaka-Lusztig duality). To get further references, the
reader may look at the quasi-exhaustive bibliography on the subject up to
1986 which is in Carter’s book.
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